
© 2024 | GFT Technologies SE and its affiliates. All rights reserved.

Asynchronous Programming
Guide for .NET

Michał Zegan

© 2024 | GFT Technologies SE and its affiliates. All rights reserved.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 2

Thanks!

A big shout-out to the great squad that made this guide happen! Special thanks to Bartosz Fijałkowski

from the .NET job family1 and Edyta Krukowska from the EB and Communications team. Without you,

this project might have been stuck in the „Idea Limbo,” never making it to the realm of a published

eBook.

And let’s extend major kudos to Bartosz Borkowski, and the other fantastic folks from the .NET

Job Family. Your insights and feedback were invaluable, and your positive energy kept the project

atmosphere as pleasant as a leisurely stroll in the park.

A huge thank you to the amazing and creative Małgorzata Barska. In one move, you changed the
shape of this e-book and gave it a bright and professional look.

Last but not least, a major kudos for the C# Discord community! Without you and your vital

discussions, I might still be trying to figure out where to start with asynchronous programming. :)

1 Job families are our internal units gathering people around specific technology. They help our

members with personal growth, support certifications, conferences, knowledge sharing, workshops

or even non-tech integration meetings. Job families ensure that every single person can develop his

abilities within selected career path and direction he/she wants to follow. Wider description can be

found at the end of this document.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 3

Contents
Thanks! 2

1. Introduction 6

2. Processes and threads 6

Processes 6

Threads 6

Task Scheduler 7

Thread Pool 7

3. Sync vs async 8

3.1. Sync vs async for computational tasks 9

3.2. Sync vs async I/O 9

Sync / Blocking I/O 10

Async I/O 11

4. Task-based asynchronous pattern in .NET 11

4.1. Async/Await feature in C# 12

4.1.1. Asynchronous method declarations 14

4.1.2. About the awaits 15

Await operator 15

4.1.3 Exception handling in asynchronous methods 18

Case 1: Handling properly awaited tasks 19

Case 2: Handling NOT properly awaited tasks 20

The UnobservedTaskException event 21

4.1.4. async void methods 22

4.1.5. Asynchronous Main method 24

4.1.6. Asynchronous iterators 25

4.1.7. Asynchronously disposable objects 27

4.2. Async in different application models 28

GUI threading model 29

Synchronization context 29

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 4

Default await behaviour 30

Using ConfigureAwait method 30

4.3. Operation cancellation 32

5. Asynchronous programming best practices 34

5.1. Use ConfigureAwait(false) when awaiting async operations in libraries 34

5.1.1. Explanation 34

5.1.2. Exceptions 34

5.2. Use Task.Run() to execute CPU bound tasks asynchronously 35

5.2.1. Explanation 35

5.2.2. Example 35

5.3. Avoid calling IO bound async methods using Task.Run	 36

5.3.1. Explanation 36

5.3.2. Exceptions 37

5.4. Prefer Task.Run() over TaskFactory.StartNew() 37

5.4.1. Explanation 37

5.4.2. Example 38

5.4.3. Exceptions 40

5.5. Avoid usage of thread pool for long running operations 40

5.5.1. Explanation 40

5.5.2. Example 41

5.5.3. Exceptions 42

5.6. Avoid blocking in async methods 42

5.6.1. Explanation 42

5.6.2. Example 42

5.6.3. Exceptions 43

5.7. Avoid async over sync 43

5.7.1. Explanation 43

5.7.2. Exceptions 44

5.8. Avoid sync over async 44

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 5

5.8.1. Explanation 44

5.8.2. Example 45

5.8.3. Exceptions 47

5.9. Do not use the async keyword for methods which always return synchronously 47

5.9.1. Explanation 47

5.9.2. Example 47

5.10. Throw argument related exceptions directly instead of wrapping them in tasks 48

5.10.1. Explanation 49

5.10.2. Example 49

6. Further learning 50

.NET Poland Job Family 51

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 6

1. Introduction
This guide covers asynchronous programming in .NET, focusing on the async/await construct

of the C# programming language. It starts by describing basic concepts and goes on to show how

async programming is to be employed in .NET world, including best practices and caveats. It also

describes some details needed to understand and properly use the async mechanism.

It is expected the reader is familiar with the C# language, including object oriented programming and

exception handling.

2. Processes and threads
Let’s define some concepts related to multithreading, which will be useful later in the guide. People

familiar with multithreading concepts in .NET can safely skip this section.

Processes

A single running program is called a process. One program might run multiple times at once, creating

multiple processes. Processes are isolated from each other, mainly by having their own address

space (meaning their own view of memory), their own table of open files and other resources.

Threads

A thread is an operating system resource contained in processes. Process starts with a single thread

called the main thread, which is responsible for initially running the program, and which might create

any number of additional threads later if needed. It’s threads, not processes, which actually execute

program code. One thread executes only a single piece of code at any given time sequentially. It is

possible and pretty common that multiple threads simultaneously execute the same piece of code.

Multiple threads are needed if the intention is to execute some parts of the program independently

from the main code. For example, if a GUI application needs to fetch network data and decode video

frames in addition to displaying the UI, it could use one thread for each of these three operations,

so that they can execute independently. Threads of a process share it’s resources including view of

memory, so access to common variables by multiple threads requires extra care and usage of thread

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 7

synchronization techniques. Each thread has it’s own stack - storing local variables and function

parameter values.

Task Scheduler

On a single processor system, only one process/thread can execute at any given time. For that

reason, there exists an operating system component called scheduler, which divides processor

time and allocates time slices to each thread (of each process) in turn. Each thread has a chance

to execute for it’s allocated time slice, then when it’s time slot is up, thread is forcefully paused

(preempted) and it’s state, like processor registers, is saved , then another thread takes it’s place and

gets resumed at the point it was interrupted (this process is called a context switch). After there are

no more threads left, the whole process repeats again indefinitely. That gives the illusion of multiple

threads/processes executing at the same time from the human perspective. In addition, executing

code itself is completely unaware of context switches happening and is written as if it was never

being interrupted. We can say threads/processes execute concurrently. On a multiprocessor system,

there are multiple processors (each physical core or thread on a hyper threading system counts as

one processor) and so there might be as many threads executing at exactly the same time as there

are processors. Such threads execute in parallel. Because there are usually more operating system

threads than processors, a scheduler is still in use. Programs have limited control over the operating

system scheduler, like being able to force an immediate context switch, or to set a thread’s priority.

Thread Pool

Threads are pretty heavy resources to create and manage, and put pressure on the operating

system. However, there might be a need to execute large number of possibly independent tasks

concurrently or in parallel. Instead of creating a dedicated thread for each task separately, especially

for short running tasks, it would be useful to have a way to reuse existing threads to better manage

resources. A solution to the problem in .NET is called the Thread Pool.

The thread pool creates and manages a small set of threads (called worker threads). There exists

the work queue user can send work items to, and worker threads constantly monitor the queue,

repeatedly picking up and executing these items, which are often completely unrelated to each other.

If there are less work items to execute than worker threads, threads without work to do remain idle,

so that they can be reused for work submitted later, but if there are more work items than threads,

incoming work remains in the queue until some thread completes the currently running operation

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 8

and becomes free to pick something else. Based on settings and current throughput, thread pool

manages (creates or destroys) worker threads as needed to accommodate the load. There is one

thread pool per process in .NET, and it is optimized for executing relatively small, short running tasks.

This guide does not go into details about threads and concurrent/parallel programming.
Asynchronous programming concept itself does not relate to threads, however in .NET
threading support (mostly the thread pool) is being used under the hood to increase
throughput.

3. Sync vs async
Let’s describe what asynchronous operations actually are, mostly by comparing them to synchronous

operations, which are also described. Note for people not familiar with newer C# features, whenever

possible, C# 9 top level statements will be used for brevity.

The following code is an example of a synchronous operation:

using	System;

DoWork();
Console.WriteLine(„Synchronous	operation	completed”);

static	void	DoWork()
{
				//	do	something	interesting

}

This code does nothing, but you can imagine that the DoWork method is actually computing some

values, performing IO or even entering an infinite loop. When top level code calls DoWork, it actually

makes the processor switch from main code to the method. Top level code can continue only after the

method actually returns back to it. In an abstract sense, we can say that top level code, by calling the

DoWork method, actually begins a synchronous operation, which means it has to wait for DoWork to

fully complete before printing the completion message.

On the other hand, asynchronous operations are operations which don’t have to fully execute before

the code calling them continues. In fact, from the perspective of the caller, starting such an operation

returns to the calling code almost immediately, and the operation itself is running in the background

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 9

independently. That allows code which originally started the operation to perform other work without

waiting for it’s completion.

Async operations usually include some way to notify the caller about their completion. Often it’s

some callback mechanism making the operation call some user defined function after it completes or

encounters an error, allowing the program to react. Such a function is often passed as an argument

when starting the operation.

3.1. Sync vs async for computational tasks

Operations performed by programs might be more CPU or I/O bound. Because CPU bound

operations always occupy the processor, they are synchronous in nature. The only way you can

make such an operation execute asynchronously is to run it on a different thread than the one starting

the operation, for example on the .NET’s thread pool, so that the calling thread can continue it’s work

without waiting for the computation to fully complete first. This, however, means another thread is tied

up to execute the task. It is usually not beneficial to run computations asynchronously, as they are

relatively fast themselves and executing them synchronously often yields better performance.

3.2. Sync vs async I/O

Sometimes there is a need to run CPU bound operations asynchronously for performance reasons,

however where asynchronous programming model shows it’s true potential is I/O bound operations,

and this is the area where it’s mostly being used. In .NET, most I/O related methods have both

synchronous and asynchronous flavors, and in some cases (especially networking) they are

exclusively async.

Characteristics of I/O bound tasks is a bit different than of CPU bound tasks, because in this case

cpu is not involved besides requesting the operation and processing it’s result, most work is done by

devices other than CPU, like storage devices or network hardware, and operations tent to be orders

of magnitude slower, especially when waiting for network data.

Below code is an example of synchronous IO operation, namely reading a file.

using	System;
using	System.IO;

//	This	program	synchronously	reads	a	text	file	and	prints	it.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 10

//	It	purposefully	doesn’t	use	high	level	I/O	operations
//	like	File.ReadAllText	or	similar.

using	var	f	=	File.OpenText(„test.txt”);

var	buffer	=	new	char[4096];
while	(true)
{
				int	charsRead	=	f.Read(buffer);	//	1

				if	(charsRead	==	0)
 {
								break;
 }

				Console.Write(new	string(buffer,	0,	charsRead));
}

Console.WriteLine();

Let’s ignore most of the program and focus on the marked line. This line reads some text from file to

the buffer passed in as parameter in a synchronous manner. The operation might complete quickly

if data is already present, for example in internal buffer of the stream, or cached by filesystem.

However, if data is not present, an actual I/O operation to the storage device is performed and

invoking the Read() method blocks, waiting for I/O to complete.

Sync / Blocking I/O

Blocking in this context means that a thread is not being scheduled during the I/O operation and is

put on hold until it completes. Blocking times might not necessarily be so high for storage, especially

SSD storage, but they might be really long in case of networking operations. As an example, in case

of network issues or other side of a tcp connection not sending data at all, the data receiver would

block possibly indefinitely.

During blocking, especially long blocking, a thread is literally wasted. To perform other operations

independently when blocking is involved, you would need to create a thread per operation. Because

threads are expensive resources, this is not an ideal solution, especially if large number of in flight

operations are expected. Ideally there would be a way to support thousands of clients/connections/

requests with a small number of concurrently running threads, which requires an alternative to

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 11

blocking. Of course servers/web applications are not the only kind of programs affected, and

networking is not the only area where throughput/resource utilization issues might be important.

Async I/O

A response to the problem is asynchronous I/O. Contrary to CPU-bound operations, I/O is

asynchronous in nature. When performing I/O operations, CPU might need to do actual work to

send the request to some kind of device, however from that point it’s not involved anymore and can

continue other possibly unrelated work. When the device completes the operation, it raises a so

called interrupt, which makes the processor stop what it’s doing and switch to special code called

an interrupt handler (managed by the operating system kernel/device driver), which reacts to it, for

example marking the operation as completed and causing related work to be queued, then resumes

the interrupted code. Applications can take advantage of this model by employing asynchronous I/O

support provided by the operating system.

An important thing to remember looking at the above description is that in case of
asynchronous I/O, there is no thread dedicated to perform the operation after it’s started.
Neither thread which started it, nor any other thread is directly responsible for the operation
until it completes.

4. Task-based asynchronous pattern in .NET
.NET has always supported asynchronous programming, but the way it was implemented evolved

over the years. The newest async programming pattern is called Task-based asynchronous

Pattern, shortly named TAP. It relies on the Task Parallel Library, which is a library used to write

asynchronous and parallel applications.

Asynchronous methods in .NET can be recognized by appearance of the Async suffix in their names,

for example ReadAsync, and by the fact they return a task object representing the async operation

like System.Threading.Tasks.Task or System.Threading.Tasks.Task<T>, or

recently introduced System.Threading.Tasks.ValueTask or System.Threading.

Tasks.ValueTask<T>. You can use the returned task to monitor the operation, including to

register functions which are called on operation completion or failure. Such notification functions are

called continuations.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 12

4.1. Async/Await feature in C#

Asynchronous programming by way of manually manipulating tasks and registering continuations

is difficult and error prone, so C# language introduced a feature which can be used to easily write

asynchronous methods. This feature is called async/await. When using this feature, you can write

async methods almost in the same way synchronous methods would be written, and compiler and

runtime libraries do most of the hard work.

Below is an example of async code analogous to the synchronous I/O example above. For

demonstration purposes, most of the program is wrapped in a separate method.

using	System;
using	System.IO;
using	System.Threading.Tasks;

var	chars	=	await	PrintFileAsync(„test.txt”);
Console.WriteLine($”Number	of	characters	in	file:	{chars}”);

static	async	Task<int>	PrintFileAsync(string	name)	//	1
{
		//	This	program	asynchronously	reads	a	text	file	and	prints	it,	then
		//	returns	number	of	characters	in	that	file.
		//	It	purposefully	doesn’t	use	high	level	I/O	operations
		//	like	File.ReadAllText	or	similar.

		using	var	f	=	new	StreamReader(new	FileStream(name,
				FileMode.Open,	FileAccess.Read,
				FileShare.Read,	4096,	true));	//	2

		var	buffer	=	new	char[4096];
		int	totalChars	=	0;
		while	(true)
 {
				int	charsRead	=	await	f.ReadAsync(buffer);	//	3

				if	(charsRead	==	0)
 {
						break;
 }

				Console.Write(new	string(buffer,	0,	charsRead));	//	4

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 13

				totalChars	+=	charsRead;
 }

		Console.WriteLine();	//	4

		return	totalChars;	//	5
}

Here are the important points related to the marked lines in PrintFileAsync method:

1. The asynchronous method declaration is identified by the async modifier. The method is meant

to return the number of read characters, but it is declared to return Task<int> instead of int.

Declarations and their meaning are further described in section 4.1.1 below.

2. The line opening a file for reading is more complex than the synchronous example, as it directly

uses respective FileStream and StreamReader constructors. However it’s necessary,

because for asynchronous I/O on files to work correctly, we have to first open the file in async

mode, which requires setting the useAsync parameter of FileStream constructor to true.

3. The ReadAsync call does the actual work of reading data from file. Because it starts an

asynchronous operation, it returns a Task<int> instance immediately, which needs to be

monitored for completion while the operation is in flight. Notice the appearance of a new await

keyword directly before the call. The await keyword makes the method wait for the operation

to fully complete before continuing, and then returns the operation result, being an int value in

this case (but could be an I/O exception being thrown as well). await does not cause blocking

and instead suspends the method until operation completes, further explanation below.

4. It’s important to remember that console I/O in .NET is synchronous only, so things like

repeatedly reading commands from console really do require a fully dedicated thread, which is

often the main thread. You should not use async methods on console streams.

5. Even though the method is declared to return Task<int>, it’s written as if it returned int

directly. The return value automatically becomes the result of method’s task.

As you can see, the top level code can also use the await operator, without needing to be specially

marked.

The code above not only shows asynchronous methods being used, it also shows asynchronous

methods being declared. Asynchronicity, when implemented right, is viral. In most cases a method

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 14

starting an async operation can’t itself meaningfully continue until it completes, but you don’t want

to lose the advantages of async by blocking. The goal is to free the thread so that it can be reused

instead. Any method calling async methods should usually become async itself, and the same

extends to it’s callers, and callers of the callers, etc, for the same reason.

Starting async operations and waiting for their completion are separate concerns, even if usually

they are combined. You can write the await separately from operation start, including in a different

method, if you still hold the returned task object. It gives ability to do things such as being able to start

multiple operations at once, then to await all of them, so they run concurrently and don’t depend on

each other, or to start a long running operation and store it’s task for later monitoring.

4.1.1. Asynchronous method declarations

Let’s start by showing how asynchronous methods can be declared when using the async/await

feature. Using this feature is an implementation detail of the method and is not visible outside, so

when consuming a library, async methods can only be identified by their signature.

You can declare an async method in C# by using the async modifier. It can take any parameters

except parameters passed by reference (using in, ref and out keywords) and things like

Span<T>. However, async method can return only the following:

• System.Threading.Tasks.Task,

• System.Threading.Tasks.Task<T>,

• void.

Async methods can actually return other types like ValueTask and user defined types made to

behave like tasks, but this is an advanced use case.

An asynchronous method cannot return arbitrary types like int or bool. It has to return a type

representing the in-flight operation, like a Task. Generally, methods which would normally return

void become Task returning methods, and methods which would normally return some T type

become Task<T> returning.

The below table contains some example synchronous method declarations and their async

counterparts, focusing on the return types.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 15

Sync declaration Async declaration
void	DoWork() async	Task	DoWorkAsync()
int	DoWork() async	Task<int>	DoWorkAsync()
IEnumerable<SomeFancyType>	

DoWork()

async

Task<IEnumerable<SomeFancyType>>	

DoWorkAsync()

All the above methods return Task or Task<T> in async variant. What about the async methods

returning void? Such methods shouldn’t generally be written except in case of creating asynchronous

event handlers. This case will further be described in section 4.1.4 below.

It is also possible to create asynchronous lambdas, which is useful when passing task returning

delegates. For example:

Func<Task>	f	=	async	()	=>	await	...;

The async modifier is still required and comes before lambda parameter list.

4.1.2. About the awaits

Now, it’s time to describe more precisely how async methods are to be written, and the await

keyword operation.

Generally, as already seen in the example above, async methods look almost like their ordinary

counterparts except the presence of await operator and the fact they return tasks as results. You

can use most constructs of the C# language with some exceptions, but they are not that important at

the moment. If an async method returns a value or throws an exception which is not caught inside of

the method, it automatically becomes it’s task completion result, which can be retrieved, for example,

by awaiting that task somewhere.

Await operator

The most important feature specific to async methods is the await operator. In fact, the async

modifier just makes the await work, and if a method is marked async and does not have any

await in it’s body, compiler issues a warning CS1998. Under the hood, the compiler rewrites

async methods in a way that makes them suspendable. The await operator suspends the method

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 16

until the awaited operation completes, but without blocking (explanation below). The method

resumes execution when the task completes. The compiler arranges task resumption by registering

continuations on task object, but the actual mechanics is normally hidden from you.

So let’s take the above asynchronous file reading example again and describe how it executes in

presence of awaits, focusing only on the PrintFileAsync() method. Here is how the execution

proceeds, step by step:

1. When	PrintFileAsync() is called, it first executes synchronously like ordinary methods.

The text file is opened and ReadAsync() is first called, returning the Task<int>

representing the ongoing operation.

2. await is applied on the returned task instance. Because the task is not completed, the

await suspends the method, arranging it to be resumed later after operation completion.

Suspending the method means it actually returns at this point, even though it didn’t yet

complete. This is also the moment when the caller (top level code in this case) receives a

Task<int> from the method. From this point on the method is asynchronous.

3. When read completes, the method is scheduled to resume on some, possibly different thread. In

most cases except GUI applications, it will be a thread pool thread.

4. The await returns the number of characters in the buffer, or if the operation threw an

exception, this is the moment when it appears.

5. If there was no exception, the loop continues normally until end of file is reached. Each time,

when performing an await, the method is suspended again freeing the thread for reuse, then is

being resumed after read completes, but not necessarily on the same thread.

6. After loop ends, the method completes with the total number of characters in the file. The

method’s return value becomes it’s task completion result and can be picked up by top level

code.

There are few important points to consider when reading the above description:

1. An asynchronous method marked with async should itself be composed of calls to other

asynchronous methods, which likely themselves call other async methods… The reverse of the

“async is viral” point above. The exception would be if awaiting previously stored tasks, but this

is more rare.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 17

2. An asynchronous method is not necessarily 100% asynchronous, it runs synchronously

when called until reaching first await. It’s actually not quite accurate, because if an operation

completed before reaching it’s await, the method will immediately continue without being

unnecessarily suspended first. In addition, after the method is resumed later (for example on

a thread pool thread), it executes code on that thread continuously until next await or return/

throw, whichever comes first, which occupies the worker thread for the duration of that fragment

of code. It means it’s important to make the first, synchronous part of the method as short as

possible, so that the operation turns asynchronous quickly. Code executing between awaits also

shouldn’t occupy it’s thread for too long, unless necessary.

3. An asynchronous method, depending on the case, might actually complete synchronously.

The method might return or throw without ever awaiting anything first. This still means that

the method records the result in a task same as in asynchronous completion case, so there

is no difference in handling it by the caller. This is useful, for example, if some normally

asynchronously retrieved result has been cached, or there was an error starting the operation

which is immediately visible and can be thrown.

The above two points need one more illustration:

using	System.Threading.Tasks;

await	DoWorkAsync(true);
await	DoWorkAsync(false);

static	async	Task<bool>	DoWorkAsync(bool	something)
{
		if	(something)
 {
				return	true;
 }

		await	Task.Delay(500);
		return	false;
}

The DoWorkAsync() method does the following:

• If given true value as parameter, it synchronously returns true, the method never needs to

suspend and caller immediately sees the method completing.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 18

• If false is given as a parameter, the method executes asynchronously, in this case completing

after roughly 500ms.

The top level code uses await here in both cases and it’s not needed to account for the

synchronous completion case. This is an implementation detail of the method which might change

without notice and without breaking the application.

4.1.3. Exception handling in asynchronous methods

Asynchronous methods, like synchronous ones, can throw and catch exceptions. For the most part,

exceptions work exactly the way one would expect. However, what happens if an exception is not

caught in the async method?

In synchronous code, unhandled exception is propagated back to the method’s caller in search

for exception handlers, and to caller of the caller if not found there, etc…, and if there are no more

methods left in the thread, the application terminates. This is called exception propagation. However,

asynchronous methods execute in a different way. Different parts of them might execute at different

times on different threads independently of the real caller. But the caller is still usually interested in

the fact the async operation has failed. In fact, an exception is another type of method’s result.

When an asynchronous method throws an exception which is not caught in method’s code, exception

is ultimately being set as the method’s task result. That makes the task be marked as faulted with

that exception object. If the caller (or possibly some other method) awaits it, then the exception is

immediately propagated by rethrowing it in the awaiting method as soon as it resumes. Of course,

because a method using await is itself async, if it doesn’t handle the exception, everything repeats

again until it is caught. await is not the only way of handling tasks, and this description might not

literally apply to other cases, but the principle is always the same. For example, if an async method

is called by synchronous code for any reason (remember sync code cannot use await and will

most likely wait in a blocking way), exception will be rethrown and further propagated in a standard

synchronous way starting from the point of waiting.

A method marked async never throws any uncaught exceptions directly, even exceptions thrown

when still executing synchronously. All exceptions are wrapped inside of a task object.

What happens if an exception is thrown in async method, but not handled at all? There are two ways

an exception coming out of async method can become unhandled.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 19

Case 1: Handling properly awaited tasks

First case is similar to one of synchronous exceptions, where an exception, after being thrown,

propagates through method’s callers until it reaches the bottom of thread’s call stack. In case of

asynchronous methods, propagation goes through the chain of awaits (as described above), then

if an exception is never handled, at some point it reaches the first asynchronous method in the call

chain. That method is often the program’s Main method/top level code. If it also doesn’t handle the

exception, the application terminates.

Let’s take an example:

using	System;
using	System.Threading.Tasks;

await	Method1();

static	async	Task	Method1()
{
		await	Method2();
}

static	async	Task	Method2()
{
		await	Method3();
}

static	async	Task	Method3()
{
		await	Task.Delay(10);	//	just	to	introduce	an	await...
		Method4();
}

static	void	Method4()
{
		throw	new	NotImplementedException();

}

Note this example includes synchronous methods in the mix. It’s not recommended to call
async code from sync code if not necessary, but doing the reverse is normal and impossible
to avoid.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 20

The Method4 throws NotImplementedException. Here’s how it propagates:

1. Because Method4 does not handle the exception, it propagates to Method3 in a standard

synchronous way. Because it’s also not handled there, it becomes the result of Method3’s

task.

2. Because Method3 has completed, Method2 which awaits it gets resumed. As task completed

with exception, that exception is rethrown in Method2.

3. Because Method2 does not handle the exception, it becomes the result of method’s task,

which in turn triggers Method1.

4. Exception propagation continues through Method1 and top level code, because both do not

catch the exception.

5. Because the exception has propagated outside of top level code, application terminates and the

exception is displayed to the user.

Frameworks, like WPF or ASP.NET Core usually run below normal user code, and they are

responsible for handling exceptions thrown in code they invoke before they reach the runtime, but the

specifics are framework dependent and are not described here.

Case 2: Handling NOT properly awaited tasks

The other case of unhandled exceptions is when an asynchronous call is not properly awaited or

otherwise handled. This might happen when someone literally forgets to await or when someone

starts a fire and forget task and thinks awaiting it is not necessary. Here is a small example of

forgetting to await:

using	System;
using	System.Threading.Tasks;

DoWorkAsync();	//	should	await	here

await	Task.Delay(-1);	//App	never	dies.

static	async	Task	DoWorkAsync()
{
		await	Task.Delay(5);

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 21

		throw	new	NotImplementedException();
}

The first, obvious problem is that the DoWorkAsync()	method is called but not awaited, so top

level code will continue without waiting for it’s completion. An additional infinite delay is introduced

after the method call so that the application never terminates and DoWorkAsync() has a chance to

complete.

The second problem with this code is that, even though DoWorkAsync() throws an exception, it is

not being handled. It’s just stored in the method’s resulting task, but the task is thrown away instead

of being awaited and exception gets completely ignored. The task becomes eligible for garbage

collection.

The UnobservedTaskException event

.NET has a mechanism to allow handling errors even in presence of such bugs.

If any task completes with an exception and is not handled at all, then when it’s being

garbage collected, Common Language Runtime raises the System.Threading.Tasks.

TaskScheduler.UnobservedTaskException event. You may register an event handler to

be notified about unseen task exceptions, and might react appropriately. However remember about

the following:

• If the event handles some exception, it should mark it as observed, otherwise the exception,

depending on .NET version and configuration, might cause application termination. Specifically,

in .NET core and never, it will be ignored.

• This mechanism is to be used only as a last resort. This event almost always indicates an

application bug which needs to be fixed by properly awaiting or even by catching exceptions

before they reach this stage, even just to log them.

• This mechanism is not triggered in many other cases, like task which is stored and not awaited.

It also doesn’t get triggered if something actually does read the task’s stored exception and then

ignores it further, as it will then count as exception being handled.

This is the same example as above, but with UnobservedTaskException event handling

implemented. Raising it requires a garbage collection to happen, so it’s being triggered manually for

demonstration purposes.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 22

using	System;
using	System.Threading.Tasks;

//	Event	handler	for	unobserved	tasks.
TaskScheduler.UnobservedTaskException	+=	HandleSkippedError;

DoWorkAsync();	//	should	await	here

await	Task.Delay(500);
GC.Collect();
await	Task.Delay(-1);	//App	never	dies.

static	async	Task	DoWorkAsync()
{
		await	Task.Delay(5);
		throw	new	NotImplementedException();
}

static	void	HandleSkippedError(object	sender,
UnobservedTaskExceptionEventArgs	e)
{
		Console.WriteLine(e.Exception);
		e.SetObserved();

}

The above program will display an AggregateException containing the

NotImplementedException thrown by DoWorkAsync(), even though we forgot to await.

Because of how Task Parallel Library works, the UnobservedTaskException event doesn’t
receive the exception directly, instead it gets an AggregateException instance containing
it. This is mainly to support advanced TPL features related to parallel programming like
attached child tasks, which aren’t really relevant here.

4.1.4. async void methods

Most asynchronous methods are declared to return some task type, like Task or Task<T>.

However, it is possible to also declare a method as async void:

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 23

public	async	void	DoWorkAsync()
{
				//	do	something

}

Contrary to methods returning a task, async void methods don’t return any object which could

be used to track their completion. That means they are inherently fire and forget. Caller is not able

to monitor their execution in any way, including awaiting them or registering continuations. Although

fire and forget methods are sometimes useful and have their place, returning a Task (even in

such cases) gives us more flexibility and control in the way method’s completion is handled. As an

example, even though caller does not care about method’s result, it might still care about exceptions

it throws and might try to log them, even if the called method itself didn’t. Also, async void

methods can accidentally be used in contexts where no asynchronous methods are expected to

be called without introducing any compiler or runtime errors, because they look exactly like non

asynchronous void returning methods (remember async modifier is method’s implementation

detail and is not visible from other projects). This is a source of pretty hard to detect bugs. As an

example, you could pass such a method by way of a delegate to anything expecting a delegate of

type Action or similar, and the calling code in question may not work correctly when the passed

method is in fact asynchronous. For these reasons, async Task methods should be preferred over

async void methods. ` in almost all cases.

There is one more reason why async void methods should be avoided, related to exception

handling. Because there is no object representing an async operation, exceptions thrown from

such methods can’t be stored in a task. Instead, they are rethrown in the current synchronization

context – the concept of a synchronization context will be explained in section 4.2 below. In

practice it means that in case of a GUI application, the exception is rethrown in the GUI framework

code and causes framework defined action related to unhandled exceptions. This means user

code including the method’s caller is unable to process it at all, even if that’s desired. If there is

no synchronization context (which usually means this is not a GUI application), the exception is

rethrown on the thread pool and the application unconditionally terminates. Note mechanisms like

the UnobservedTaskException event do not work in this case and cannot be used to log

exceptions from failed async void operations.

The above description raises the question about such methods being useful at all. They should be

used in one and only one case, which is asynchronous event handlers, mostly in GUI applications.

Events are inherently fire and forget, they are usually raised by some framework code directly. Each

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 24

event might have multiple event handlers registered. However, due to how events work, it’s not

possible to create and reliably use events returning anything else than void. For that reason, if you

need to handle an event and call asynchronous operations in the event handler, then you have to

declare the event handler method as async void.

private	async	void	OnEvent(object?	sender,	EventArgs	e)
{
		//	do	stuff
		await	Task.Delay(500);
}

4.1.5. Asynchronous Main method

As a recap, when not using the top level statements feature and writing the Main method directly, it

can normally take one of the following forms:

• static	void	Main()

• static	void	Main(string[]	args)

• static	int	Main()

• static	int	Main(string[]	args)

All these forms of Main are synchronous methods. As with any other methods, Main can also be

made asynchronous, and each kind of Main shown above has it’s asynchronous counterpart. These

are:

• async	Task	Main()

• async	Task<int>	Main()

• async	Task	Main(string[]	args)

• async	Task<int>	Main(string[]	args)

They are analogous to the synchronous forms, except that they return a Task or Task<int> and

you can use async/await feature in code. Here is an example:

using	System;
using	System.Threading.Tasks;

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 25

class	Program
{
		static	async	Task	Main()
 {
				await	Task.Delay(500);
				Console.WriteLine(„Program	completed	successfully”);
 }
}

The compiler correctly handles the Main’s returned task. The program does not terminate until

the method fully completes. In addition, exceptions propagated out of the Main method correctly

terminate the application, same as in case of synchronous Main.

Remember that top level code is always turned into an invisible Main method. If it never awaits,

it’s turned into a synchronous Main, and if it has at least one await line, it’s turned into it’s async

counterpart.

4.1.6. Asynchronous iterators

To write enumerators easily, you can use iterator methods.

Iterator methods return objects implementing IEnumerable<T> and IEnumerator<T>

interfaces, but these interfaces are inherently synchronous. What happens if there was a need to

access a slower data source like a database, which would often be accessed asynchronously? Let’s

see an example of an iterator method which returns numbers from 0 to 100. To simulate a slow data

source, the method sleeps 100 milliseconds between returning each number.

static	IEnumerable<int>	Items()
{
		for	(int	i	=	0;	i	<=	100;	i++)
 {
				Thread.Sleep(100);
				yield	return	i;
 }

}

And here is a simple foreach example to use it.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 26

foreach	(var	i	in	Items())
{
		Console.WriteLine(i);
}

The foreach repeatedly calls the enumerator’s MoveNext()	method, which generates further

items. However, each call blocks for 100 milliseconds. Blocking is not really desired in async heavy

code.

Previously, one workaround could be to first buffer the items in an asynchronous way into a collection

then iterate through them synchronously, but it’s not always desirable, especially if data comes in

streaming fashion and there is lots of data to process. Enumerable data sources can potentially be of

infinite size. For that reason C# 8 introduced asynchronous iterator methods. They are asynchronous

methods returning IAsyncEnumerable<T> or IAsyncEnumerator<T>, which are interfaces

used for asynchronous enumeration. In async iterator methods, you can use both await and yield

keywords. Here is how the above example could be rewritten using this feature to eliminate blocking.

static	async	IAsyncEnumerable<int>	Items()
{
		for	(int	i	=	0;	i	<=	100;	i++)
 {
				await	Task.Delay(100);
				yield	return	i;
 }
}

However, to use IAsyncEnumerable<T> without writing code by hand, a special form of

foreach loop is needed:

await	foreach	(var	i	in	Items())
{
		Console.WriteLine(i);

}

This is equivalent to the above, except the foreach is preceded by an await keyword.

This makes the loop itself asynchronous. Internally, instead of calling MoveNext()

method of IEnumerator<T>, it calls and awaits MoveNextAsync() method of

IAsyncEnumerator<T>. That makes it possible for the iterator methods, or other

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 27

implementations of IAsyncEnumerator<T> interface to employ asynchronous operations instead

of having to block when operating on slow resources.

4.1.7. Asynchronously disposable objects

All objects which directly or indirectly hold unmanaged resources, or otherwise need to contain some

cleanup logic, implement IDisposable interface and it’s Dispose() method. However, in some

cases, disposing an object, like closing database connections, might require performing I/O. In order

not to have to block on Dispose() calls, C# 8 introduced an IAsyncDisposable interface and

it’s DisposeAsync() method, which can be implemented by objects whose disposal requires

performing I/O operations which might benefit from being executed asynchronously. As an example,

closing database result sets or connections might require communication with database to perform

an orderly resource release, and writing a file might require flushing stream buffers to disk before

closing the stream.

Below is a short example of writing a file asynchronously, which shows asynchronous disposal. Note

the Stream and TextWriter classes implement IAsyncDisposable.

using	System;
using	System.IO;

//	This	program	asynchronously	writes	few	lines	to	a	text	file.

await	using	var	f	=	new	StreamWriter(new	FileStream(„test.txt”,	//	1
		FileMode.OpenOrCreate,	FileAccess.Write,
		FileShare.Read,	4096,	true));

await	f.WriteLineAsync(„line1”);

await	f.WriteLineAsync(„line2”);

To dispose an object asynchronously, you need to use a special form of using block or declaration

called await	using, whose example is shown above. If the await is omitted, the synchronous

Dispose() method will be called. It’s possible for a single object to implement both synchronous

and asynchronous dispose patterns or only one of them, depending on the expected usage. For that

reason you should make sure to choose the correct form of using, as the compiler will not issue a

warning in case of selecting the wrong one if both Dispose flavors are implemented.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 28

4.2. Async in different application models

.NET can be used in different kinds of applications, including console, web, desktop or mobile

applications. Different application models have different constraints related to threading, due to

different way they work. The previous examples were all console applications which just called some

asynchronous code. Console applications have no special constraints and use the thread pool for

running async methods. Let’s describe threading requirements for other application models:

• In case of web applications (written in ASP.NET Core), they generally receive and process

HTTP requests and send responses, and these requests/responses are independent from

each other, at least where framework is concerned. HTTP protocol is stateless in nature.

One application has to be able to serve potentially thousands of requests per second for

different clients. For that reason, these requests execute independently from each other on

the thread pool. That means there are no additional constraints in comparison to plain console

applications, and asynchronous code works exactly the same way. It’s not true for the older

ASP.NET applications, but that case is not being described here.

• GUI applications, like WinForms, WPF, UWP or MAUI work a bit differently. User interface is

stateful and interface elements are shared resources. UI operations are executed on a single

thread called the UI Thread, thread pool can only be used for tasks not requiring access to the

user interface. .NET makes it easy to write asynchronous code which needs to interact with user

interface, so asynchronous methods get resumed on the UI thread by default.

• In case of browser applications (like Blazor), the concept of asynchronous programming is built

on top of the javascript’s support for async, not on threading constructs, and it’s not described

here. However, it’s basically similar to the GUI case above, except there is no support for other

threads at all.

By default, for applications like web or console applications, no specific threading requirements

apply. This means an await might resume a method on any free thread. Such a thread will usually

belong to the thread pool, but there are situations where it’s not the case. Examples of executing

out of thread pool are rare, but might occur depending on various circumstances, mostly related to

performance optimizations done by the runtime. A single async method usually executes multiple

awaits throughout it’s lifetime, and each of them is allowed to resume on a different thread. You

should not write code which assumes a specific thread of execution. Multiple asynchronous methods

running at the same time might run concurrently on different threads, and if they share data, applying

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 29

concurrent programming/multithreading techniques, like inter-thread synchronization, might be

necessary. However, a single async method, even when moving between threads, will always

execute on single thread at a time.

The above described model does not fit all possible use cases, so .NET has some mechanisms to

allow influencing execution of tasks and async methods. The main example where free threading

model does not work well is GUI applications, let’s explain that case in more detail.

GUI threading model

In GUI frameworks, UI elements are represented as shared, mutable objects. Due to challenges

related to concurrent programming, UI elements are usually bound to a thread which created

them, and only that single thread can interact with them. In addition, only that thread receives and

processes events related to these elements, including input related events. This thread is usually

called an UI thread. There can be more than one UI thread per application, but each one manages

it’s own part of the user interface. Often, the program’s main thread becomes the UI thread.

UI threads are responsible for receiving, dispatching and processing input and other events related

to their bound UI elements. They run an event loop, which polls operating system queues for events

and runs event handlers. They can also execute other user defined work, which makes them similar

in function to thread pool’s worker threads.

When an async method runs on the UI thread, for example it’s an asynchronous event handler, the
await operator will by default arrange the method to always be resumed on the UI thread. That

makes it possible to easily write asynchronous code which manipulates the user interface. This is

done in .NET using a mechanism called synchronization context.

Synchronization context

Synchronization context is a generic mechanism used by .NET to support alternative threading

models. Each thread can separately set it’s own synchronization context, and when that happens,

the await operator, if run on that thread, will use it’s associated sync context to resume the method

instead of using the thread pool. In case of GUI applications, each UI thread has a synchronization

context which schedules work back to the same thread. Writing or directly using synchronization

context objects is an advanced topic which is out of scope for this guide.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 30

Default await behaviour

By default, the behavior of await depends on the context where it’s being used. For example, in a

GUI application, async methods started on UI thread, like event handlers, will be scheduled back on

that thread after resumption, but methods originally running on a non ui thread, like on thread pool,

for example methods scheduled using Task.Run()	or other similar mechanisms, will not detect

the synchronization context and will use the default threading model.

This example is the fragment of a simple forms application. It has a form with control for displaying

text, and when it opens, it’s supposed to display the current external IP address of this computer. This

example uses the Load event to react on form being opened and the ipify.org API to retrieve external

IP.

private	async	void	OnLoad(object?	sender,	EventArgs	e)
{
				using	var	client	=	new	HttpClient();
				var	ip	=	await	client.GetStringAsync(„http://api.ipify.org/”);
				IPText.Text	=	ip;
}

Automatic marshalling of all async methods back to UI thread has one drawback. Because the same

thread is responsible both for acting on UI events and executing other user work, there is a risk of

putting too much pressure on that thread, for example by starting too many or too intensive async

operations. That will in turn make the UI less responsive, or sometimes could cause it to freeze

completely.

Using ConfigureAwait method

A solution to this problem is to offload everything that doesn’t need access to the UI to the thread

pool. When an async method awaits an operation, it is possible to disable the default logic and

cause the method to be unconditionally resumed on a thread pool. That’s being done by using the

ConfigureAwait() method on the returned task. It works as follows:

• ConfigureAwait(true) is the same as not using the ConfigureAwait at all and means

that a method needs to be resumed in the same context where await happened. Although

redundant, this is useful to explicitly show developer’s intentions not to ignore the context.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 31

• ConfigureAwait(false) means that the method will be resumed on thread pool, ignoring

current context.

The below example is the same as above, but it tries to use ConfigureAwait(false) during

retrieval of external IP address.

private	async	void	OnLoad(object?	sender,	EventArgs	e)
{
				using	var	client	=	new	HttpClient();
				var	ip	=	await	client.GetStringAsync(„http://api.ipify.org/”)
				.ConfigureAwait(false);
				IPText.Text	=	ip;

}

This code will cause an InvalidOperationException to be thrown in debug mode.

This is because, even though the HTTP operation is started on UI thread, the usage of

ConfigureAwait(false) makes await operator to resume the method on the thread pool

instead. Accessing the UI from another thread is an error.

If a method leaves the UI thread, it cannot return back to it without calling some API to explicitly

schedule work on UI thread. That means if a method calls ConfigureAwait(false) at least

once, it moves to a thread pool and will stay there until it completes. If you would like to create some

complex operation that needs to update the UI, but also is intensive enough to offload most of it to

the thread pool (for example networking), you need to factor it into multiple methods, where one

method is a helper and executes the actual complex operation on thread pool, and the other one,

being an actual method to call, doesn’t use ConfigureAwait(false), but instead calls and

awaits the helper method, then performs all necessary UI work. Other more complex variations of this

pattern are of course possible.

Let’s see the below example which is again retrieving external IP address, but this time

HttpClient.GetAsString is being reimplemented as an excuse to have some non UI

operation which could be offloaded to a thread pool.

private	async	void	OnLoad(object?	sender,	EventArgs	e)
{
				//	We	are	now	on	UI	thread.
				using	var	client	=	new	HttpClient();
				var	ip	=	await	GetIpAsync(client);
				//	We	are	still	on	UI	thread,	even	though	GetIpAsync

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 32

				//	completed	on	thread	pool.
				IPText.Text	=	ip;
}

private	async	Task<string>	GetIpAsync(HttpClient	client)
{
				//	We	are	on	UI	thread.
				var	response	=	await	client.GetAsync(„http://api.ipify.org”)
				.ConfigureAwait(false);
				//	And	now	we	are	on	thread	pool	and	will	stay	there.
				response.EnsureSuccessStatusCode();
				return	await	response.Content.ReadAsStringAsync()
				.ConfigureAwait(false);
				//	Completes	on	thread	pool.

}

Notice that the ConfigureAwait(false) in GetIpAsync is repeated twice. This is a good

practice even though a method which uses it once will never be rescheduled back to UI thread

without manual intervention.

An important point to consider is that ConfigureAwait directly affects only the single await in

a single method. It affects where that specific method will be resumed after the specific operation

concludes, but does not affect any other async operations, including methods this method

calls. In the above example, GetIpAsync, because of ConfigureAwait(false) used

when awaiting HttpClient calls, will complete on the thread pool, but after it completes, the

OnLoad event handler which awaits it’s result will still resume on UI thread, because it never used

ConfigureAwait(false) when awaiting the GetIpAsync call.

4.3. Operation cancellation

Asynchronous operations, same as synchronous operations, are not cancellable by default. Task

objects can be used to monitor ongoing operations, but they don’t have a way to cancel them.

Cancellation in .NET is cooperative and relies on the operation itself supporting cancellation. The

cancellation mechanism is independent of async and can be used for all kinds of possibly long

running or intensive operations.

Generally, a cancellable operation, including asynchronous cancellable operation, indicates

cancellation support by it’s method having an additional (usually last) parameter of type

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 33

CancellationToken, often marked as optional. Such a method is written to check the

cancellation token status, and to terminate if the token was cancelled. When such a method calls

other cancellable operations, it should pass the same cancellation token as argument down to these

operations. If it calls non cancellable operations, it’s recommended that these operations either

don’t take much time to complete, or that there exists some other way to abort them which can be

employed when cancellation is requested.

Here is an example of a simple console application which runs an async operation, using Task.

Delay(100) in a loop to simulate some work. The loop is infinite and can only be cancelled by the

passed cancellation token.

using	System.Threading;
using	System.Threading.Tasks;

using	var	cts	=	new	CancellationTokenSource();
//	This	is	intended	to	model	a	background	operation	which	we
//	don’t	await	immediately.
//	We	await	it	after	we	try	to	stop	it	to	get	it’s	result.
//	Othervise	it	runs	forever.
var	operation	=	ExecuteAsync(cts.Token);

//	Cancel	the	operation,	then	await	to	retrieve	result.
//	The	operation	will	throw	when	cancelled.
cts.Cancel();
await	operation;

static	async	Task	ExecuteAsync(CancellationToken	ct	=	default)
{
		while	(true)
 {
				//	Our	cancellation	check.
				ct.ThrowIfCancellationRequested();
				//	Fake	delay,	also	make	sure	to	pass	token	downstream.
				await	Task.Delay(100,	ct);
 }

}

Running this program should cause an TaskCanceledException to be displayed. This

exception is the result of a cancelled ExecuteAsync() method. If the method was not awaited

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 34

after issuing a cancel, there would be no proof of cancellation being successful, even though the

method completed.

5. Asynchronous programming best practices
This section lists some best practices which should be followed when writing asynchronous

applications in .NET, especially using async/await language features. These are in addition to best

practices mentioned elsewhere in the guide.

Each section contains description of a best practice, it’s explanation, good and bad practice examples

where applicable, and possible exceptions to the rule.

5.1. Use ConfigureAwait(false) when awaiting async operations
in libraries

All general purpose libraries which await inside of their own async methods should always use

ConfigureAwait(false), so that the thread pool is always used to execute async method’s

code.

5.1.1. Explanation

General purpose libraries can be used by applications of any kind and should behave correctly no

matter of the application’s type. However, when not using ConfigureAwait() in library’s own

async methods, these methods would be resumed on a thread pool or on UI thread depending on

the application, so behavior of the library would unnecessarily depend on application specific factors.

Remember that placing too much work on UI thread can make the GUI unresponsive, and not using

ConfigureAwait(false)	in a library would cause library’s internal operations to be resumed on

UI thread for all GUI applications. General purpose libraries usually don’t need to interact with the UI

or application specific framework.

5.1.2. Exceptions

The exception to the rule is libraries which are application model or framework specific, for example

ASP.NET Core specific libraries or UI control libraries. Of course, general purpose libraries might

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 35

contain application model specific parts themselves, and these also aren’t bound by this rule if they

interact with the model or integrate with specific application framework in use. However, you should

follow this best practice in most library code.

5.2. Use Task.Run() to execute CPU bound tasks asynchronously

When trying to asynchronously execute a CPU bound operation, use Task.Run() or similar TPL

method to schedule it on a thread pool.

5.2.1. Explanation

CPU bound operations are synchronous in nature and mostly occupy the thread they execute on.

If you have a need to execute such operations asynchronously, the only way to do it is to schedule

them onto a different thread. The recommended mechanism is the Task.Run() method, which

schedules task to the thread pool, instead of creating a dedicated thread for the task. You can use

a different method like Task.Factory.StartNew, however this is a lower level, more complex

method, and it’s usage is not recommended for most common scenarios.

Before deciding whether to run a CPU bound task asynchronously, you should to measure the

performance of synchronous vs asynchronous execution of the specific operation in a specific

context. Synchronous execution is generally easier to manage and doesn’t require handling of tasks

nor additional context switches, so it’s recommended to use it and only use asynchronous execution

if there is a performance benefit.

5.2.2. Example

Below is an example of a synchronous method for computing factorial values.

static	BigInteger	ComputeFactorial(int	n)
{
		var	result	=	BigInteger.One;

		for	(int	i	=	2;	i	<=	n;	i++)
 {
				result	*=	i;
 }

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 36

		return	result;

}

This method should be called synchronously in most cases, however for larger n values, in some

contexts, asynchronous execution might be beneficial. If it’s needed, it can be done like this:

await	Task.Run(()	=>	ComputeFactorial(40000));

Task.Run()	returns a Task object, which can be awaited in async methods.

5.3. Avoid calling IO bound async methods using Task.Run

Asynchronous methods should be directly called without using API’s like Task.Run() to schedule

them. This is true no matter whether they are to be awaited or whether their execution is to be

monitored separately.

5.3.1. Explanation

Sometimes it’s necessary to execute an asynchronous method without directly awaiting it. For

example, in a web application, you might create an API action which begins some long running

operation. Then, instead of awaiting this operation, potentially causing the request to time out, you

might store operation’s task and provide another API action to monitor it’s progress and detect

completion.

Sometimes, you can be tempted to use Task.Run() in such cases like this to begin the operation,

as the intention is to execute it asynchronously, but not to directly depend on it’s completion:

OperationTask	=	Task.Run(async	()	=>	await	SomeOperationAsync(...));

However, although such code works correctly, using this pattern is completely unnecessary. An

asynchronous method itself returns a Task object which can be used to monitor it’s progress. Also,

even though async methods, when called, execute code synchronously until encountering the first

await, the synchronous portion is usually very brief. Using Task.Run() would unnecessarily

schedule that synchronous code to the thread pool, which would actually degrade performance as

opposed to executing such a method directly. Task.Run() doesn’t in any way affect later method

execution, as further scheduling is driven by the await operator. The exception is applications with

alternative threading models like GUI applications, where Task.Run() forces a method to run

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 37

completely on the thread pool, even if normally it would prefer to be scheduled on an UI thread. In

such case, using Task.Run() would be a bug.

5.3.2. Exceptions

An exception happens when the method’s synchronous portion is actually computationally intensive

to the point where, at least in specific contexts, scheduling it to run asynchronously gives a

performance benefit.

An additional exception to the rule happens when Task.Run() would be used in a

GUI application to force some external, badly written method which doesn’t correctly use

ConfigureAwait(false) to run on a thread pool. This is just a workaround, and if possible, the

offending method should be fixed instead.

5.4. Prefer Task.Run() over TaskFactory.StartNew()

If there is a need to explicitly schedule operations, whenever possible, use Task.Run() to

schedule tasks on the thread pool. Use TaskFactory.StartNew() only when actually

necessary.

5.4.1. Explanation

This was mentioned above but deserves it’s own section. Task.Run() is preferred over

TaskFactory.StartNew() because it’s easier to use.

The main differences between the two are:

• Task.Run() always schedules operations to the thread pool, by using the default task

scheduler, no matter the context. TaskFactory.StartNew() allows to explicitly choose a

scheduler, but defaults to TaskScheduler.Current, which means scheduling depends on

context. This means it’s relatively easy to introduce bugs related to using incorrect scheduler

when the intention is to force usage of a thread pool. Both methods don’t use a synchronization

context by default, even if it’s present, so none of these methods default to scheduling tasks on

UI thread, for example.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 38

• Task.Run() has explicit overloads accepting Func<Task> and Func<Task<T>>

delegates returning a Task or Task<T> object, which works as you would expect. This

makes executing asynchronous methods with Task.Run() easier if that’s necessary.

TaskFactory.StartNew(), when given an async delegate, will actually return a

Task<Task> or Task<Task<T>> object. That’s because it doesn’t handle async methods

specially. Instead, it treats every method the same, and at the low level, an async method’s

result is just it’s task.

5.4.2. Example

This is a simple example of using Task.Run():

await	Task.Run(()	=>	Console.WriteLine(„test”));

However, using TaskFactory.StartNew() to achieve the same effect is more complex

because you have to pass the correct options and task scheduler. This is what Task.Run() does

internally:

await	Task.Factory.StartNew(()	=>	Console.WriteLine(„test”),
CancellationToken.None,	TaskCreationOptions.DenyChildAttach,	

TaskScheduler.Default);

The case of asynchronous code being wrapped is the trickier one. For example, this is how to wrap

an async method/lambda with Task.Run.

await	Task.Run(async	()	=>	await	Task.Delay(1000));

As you can see, it’s straight forward, and even though the lambda has been wrapped by Task.

Run(), the returned task will correctly handle that case and will complete after the async lambda

completes. The difference between this and directly calling the lambda is just that the lambda itself

returns a task on encountering first await, while Task.Run returns a task immediately and it also

covers the moment when lambda didn’t yet start.

However, that’s not so easy with TaskFactory.StartNew(). Namely, this code is not only more

complex, but also doesn’t work as intended:

await	Task.Factory.StartNew(async	()	=>	await	Task.Delay(1000),
CancellationToken.None,	TaskCreationOptions.DenyChildAttach,	

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 39

TaskScheduler.Default);

In this case, the TaskFactory.StartNew() doesn’t return a Task instance. Instead, it returns a

Task<Task> instance.

The above happens because the lambda, even though it’s an async lambda, is being treated like an

ordinary method here. So TaskFactory.StartNew interprets this lambda as an ordinary function

whose return type is Task, so it just returns a task object covering exclusively the synchronous

portion of that lambda, which is the only part being directly scheduled by StartNew(). The

synchronous fragment completes very quickly by returning the Task representing the started

operation, which is then treated as normal method’s return value and captured by task returned from

StartNew.

One solution that might come to mind to correctly await async methods wrapped by TaskFactory.

StartNew() is to double await:

await	(await	Task.Factory.StartNew(async	()	=>	await	Task.Delay(1000),
CancellationToken.None,	TaskCreationOptions.DenyChildAttach,	

TaskScheduler.Default));

The inner await awaits the Task<Task> which completes when the lambda returns a Task

representing it’s own execution, and the outer await grabs this task and awaits it, completing when

the delay commences.

However, this is not really intuitive. For that reason, there exists an extension method called Unwrap()

which works on Task<Task> and Task<Task<T>> types, which turns them into ordinary Task

and Task<T> instances, which behave the same as those returned by Task.Run() and correctly

handle the whole async lambda execution. Here is an example of it’s usage, which is actually

equivalent to Task.Run() example above:

await	Task.Factory.StartNew(async	()	=>	await	Task.Delay(1000),
CancellationToken.None,	TaskCreationOptions.DenyChildAttach,	
TaskScheduler.Default)

.Unwrap();

You have to remember about correctly using Unwrap when calling TaskFactory.StartNew(),

otherwise the await will complete at unexpected times, usually too early, at the end of any async

method’s synchronous fragment, and this will happen without a warning. This might be a source for

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 40

hard to detect bugs. This is one more reason why TaskFactory.StartNew() should be avoided

whenever possible.

5.4.3. Exceptions

TaskFactory.StartNew() has it’s uses, for example when actually caring about task

schedulers or when it’s necessary to use non standard task creation options. One such use

will be described in section 5.5 below. However, especially when wrapping async methods with

StartNew(), you have to pay attention to the caveats described above in order not to introduce

subtle bugs.

5.5. Avoid usage of thread pool for long running operations

When executing long running operations, do not use a thread pool. Instead, create a dedicated

thread for the operation.

If possible, it’s recommended to make such operations themselves fully asynchronous, in which

case this rule does not apply. This rule applies only if that’s not possible or desirable for any reason,

including performance. As an example of making long running operations asynchronous, instead of a

thread processing items from a ConcurrentQueue or a BlockingCollection, it is better to

use asynchronous aware Channel instances.

5.5.1. Explanation

Long running operations are operations which occupy a thread for extended periods of time. These

could be really long non parallelizable computations, or operations which, for any reason, require

extensive blocking, for example background handling of queues. This doesn’t cover IO bound async

operations, as these are written to free threads promptly anyway. This also doesn’t cover parallel

operations, because they are usually divided into many smaller, short running units.

It is generally not recommended to put long running tasks on the thread pool, as it’s optimized for

reasonably short running work items. Running too many such long operations might exhaust the

thread pool and cause new work items not to be executed until a thread is freed. It might also cause

creation of extensive number of additional threads to cope with the situation. However, threads aren’t

added immediately and are expensive resources, so it cannot be seen as a solution to the problem.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 41

You should create dedicated threads for long running operations. One can do it directly or using

TaskFactory.StartNew() with TaskCreationOptions.LongRunning flag.

5.5.2. Example

This is a method mimicking a long running operation which probably runs throughout application’s

lifetime or until explicitly cancelled:

static	void	Run(CancellationToken	ct)
{
		while	(!ct.IsCancellationRequested)
 {
				//	Do	something,	potentially	waiting	on	external	events...
 }

}

This operation is long running as it actually runs until explicitly cancelled. For that reason, it’s best to

schedule it to a dedicated thread:

var	thread	=	new	Thread(Run);

thread.Start();

If the operation would finish by itself and return a result, you can’t capture such a result this way and

would need additional code + some thread synchronization for that.

Alternatively, you can use TaskFactory.StartNew(), which gives an advantage of having

more control over the execution and operation result if any. You can give it a hint that the operation

is long running, which might influence the task scheduler’s decision. TaskScheduler.Default,

when seeing this flag, will create a dedicated thread for the operation. Remember that other task

schedulers might behave differently, so you have to pay attention to the method invocation. Here is

an example:

await	Task.Factory.StartNew(Run,
CancellationToken.None,
TaskCreationOptions.DenyChildAttach	|	TaskCreationOptions.LongRunning,	
TaskScheduler.Default);

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 42

5.5.3. Exceptions

Not all cases of long running operations necessarily require dedicated threads. As an example,

singleton background jobs which run for the lifetime of the application, if they are written as long

running synchronous tasks, might be scheduled on the thread pool, as occupying one of a dozen

threads starting from the very beginning might not make an impact for the application. So, you might

decide to use thread pool if the number of such tasks is going to be sufficiently rare and doesn’t

change frequently. As always, it’s best to measure performance of each solution to make an informed

decision.

5.6. Avoid blocking in async methods

Asynchronous methods should not invoke operations which block the calling thread. This rule can

also be generalized to say that no code running on any kind of worker thread, like thread pool or UI

thread, should use blocking methods.

5.6.1. Explanation

Async operations run on some kind of generic worker threads like thread pool threads. Using

blocking operations on such threads is wasteful, as the thread can’t then be used to execute other

work, decreasing application’s throughput. In case of the thread pool, it might lead to pool exhaustion

and the need to create more threads. In case of UI threads, it causes the UI to be less responsive, or

in case of long blocking operations, to freeze completely.

The above description applies equally to most non asynchronous work running on a thread pool or UI

thread, like event handlers or tasks submitted by Task.Run().

General rule of thumb is that asynchronous methods should mostly call other asynchronous methods

instead of their synchronous, blocking counterparts.

5.6.2. Example

Probably one of the more common examples of that problem is the situation where you need to

make an operation wait for some time before continuing. Normally you do that by calling Thread.

Sleep() method:

Thread.Sleep(1000);	//	Wait	1	second.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 43

However, that’s not a good practice inside of async aware code or generally on thread pool/ui thread,

as this will block the current thread for 1 second. You should find an asynchronous way to achieve

the same effect. In this case, you should use Task.Delay() method.

await	Task.Delay(1000);

5.6.3. Exceptions

There are exceptions to the rule related to operations which block for short periods of time. For

example, in the need of inter thread synchronization, it’s reasonable to use mechanisms like locks,

even in async methods, provided the locked sections of code run relatively fast (for example they

only update data structures). That is despite the fact the lock keyword blocks a thread if it cannot

acquire a lock at the time. When that’s not the case and there is a risk of long blocking at the lock

statement, or there is a need to await inside a lock (which you can’t do because locks are bound to

the identity of locking thread), use a SemaphoreSlim, which supports asynchronous operation and

doesn’t have thread affinity.

It is also acceptable to use synchronous I/O, usually file I/O, in cases where it’s simpler to use and

actual I/O is relatively infrequent, like reading and caching configuration, loading code etc.

There might be other programming patterns which require blocking, usually in relation to inter thread

synchronization and parallel programming. However, parallel programming is out of scope for this

guide.

5.7. Avoid async over sync

Avoid creating async APIs which just call their synchronous counterparts using mechanisms like

Task.Run().

5.7.1. Explanation

Async over sync is a term describing the situation where asynchronous API is created by internally

calling synchronous (usually blocking) methods which do the actual work. Asynchronicity in this case

is achieved by scheduling these calls onto different threads, often using Task.Run, and awaiting

them. This often happens when trying to create an asynchronous wrapper for synchronous only

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 44

API, often because of being forced to work in async environment or just trying to add async api for

something which doesn’t originally have it.

The problem with this approach is that real asynchronous API should not be blocking any thread

for any single operation. Making async methods which do their work by just calling synchronous

methods using Task.Run() makes it potentially slower in comparison to calling the synchronous

API directly, as in addition to a synchronous method having to be executed, it also needs to be

scheduled on thread pool, and it’s result communicated back to the awaiting method. That way an

additional thread becomes wasted without gaining the benefits of async. Of course, running too many

such operations might exhaust the thread pool.

5.7.2. Exceptions

CPU bound operations are always synchronous and, if performance considerations apply, it might

be better to schedule them on a thread pool to make them asynchronous. In case of IO bound

operations, there are cases where no asynchronous api exists, or such api can’t be reasonably

created in any way other than scheduling the synchronous counterpart on another thread, and such

api is required in some context, like using an async heavy framework. Decisions about what to do

should be based on the actual usage context and performance measurements. However, calling the

api directly should be considered first, if no real async alternative can be found.

5.8. Avoid sync over async

Avoid blocking waits on asynchronous method’s task.

5.8.1. Explanation

Sync over async is a practice where an asynchronous method is being called (usually in synchronous

code), and then a blocking wait is performed on it’s returned task. The motivation is usually that

the fragment of code calling the operation cannot, without being rewritten, itself be made async,

so it’s not possible to await the task, yet the synchronous code actually depends on the operation

result or on it’s completion. Usually, you would use Task.Wait(), Task.Result or Task.

GetAwaiter().GetResult() for this purpose.

The problem with this approach is that using a blocking wait blocks the current thread. It’s actually

a specific kind of the “do not block worker threads” rule, especially that it’s often the case that most

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 45

code runs on worker/dispatcher threads. The specific difference between using await and this

approach is that in this case, in addition to a thread (often taken from thread pool) briefly executing

code of the called async method, another thread is wasted for waiting, and this other thread is

not available for picking up work. In case of UI thread this rule is even more important, because

of the fact the called async method is likely to schedule it’s work on the same thread (when not

using ConfigureAwait(false)), using a blocking wait will cause a deadlock. Namely, this is

a situation where a blocking wait happening on UI thread depends on an operation which wants to

execute code on the same UI thread, which is not available due to the wait. That way the operation

can’t continue and never completes. This in turn causes the wait never to return and the UI to freeze.

Often, you can actually refactor/rewrite the code for it to become async and to be able to safely

await such methods, which will be shown in the example below. Of course, that might not always be

possible.

5.8.2. Example

One of the cases where the sync over async antipattern might often be encountered is the case of

constructors and properties.

Constructors and properties in C# do not support asynchronous execution. They are required to

operate synchronously, however there are cases where you would like to use an asynchronous

method inside. Example could be a property which lazily fetches data from database, or a constructor

which needs to use asynchronous API to fill object fields. The most obvious and straightforward way

to write such constructors and properties is to use a blocking wait.

This is an example Configuration class. It loads and caches the configuration from some data

source like a database, and allows to asynchronously reload it.

using	System.Threading.Tasks;

public	class	Configuration
{
		//	Properties...

		//	This	constructor	initializes	the	configuration,	performing	an	initial	
refresh.
		public	Configuration()
 {

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 46

				RefreshAsync().GetAwaiter().GetResult();
 }

		public	async	Task	RefreshAsync()
 {
				//	Use	a	database	to	load	the	configuration...
 }

}

This stub class contains a method called RefreshAsync(), which is the main method used to

perform configuration reload. Because the configuration needs to be eagerly loaded, constructor

internally uses this method, however it issues a blocking wait, which is not an ideal solution.

There are ways to avoid such problems. In this case, a good approach would be to create a static

factory method which in turn instantiates the object. Such a method could be asynchronous and

perform a refresh without blocking. That means the constructor itself should be private.

using	System.Threading.Tasks;

public	class	Configuration
{
		//	Properties...

		private	Configuration()
 {
				//	Empty,	most	work	is	done	by	factory.
 }

		public	static	async	Task<Configuration>	CreateAsync()
 {
				var	cfg	=	new	Configuration();
				await	cfg.RefreshAsync();
				return	cfg;
 }

		public	async	Task	RefreshAsync()
 {
				//	Use	a	database	to	load	the	configuration...
 }

}

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 47

A similar approach could be used to work around the need to call async methods in properties.

You could either cache their result eagerly or replace them with async getter/setter methods as

appropriate.

5.8.3. Exceptions

There are cases where blocking waits are acceptable or even appropriate. For example, when calling

asynchronous methods on dedicated threads, there is no other choice, although it’s better to use their

synchronous blocking counterparts in such cases, if any are available. Also, there are cases where

rewrite/refactor to async is not a viable option, for example in some legacy code (remember async

being viral. As always, however, it’s a good practice to measure performance of the given solution

and choose the best approach based on results.

5.9. Do not use the async keyword for methods which always return
synchronously

Methods which never need to await should not use the async keyword, even if they return a task.

They should be written like synchronous methods, returning results using Task.FromResult(),

Task.CompletedTask and similar API directly.

5.9.1. Explanation

Sometimes it is necessary to write a synchronous method which behaves like asynchronous

methods. For example, when implementing an interface which exposes only asynchronous methods,

but where the implementation doesn’t need to perform any actual asynchronous work (for example

fixed/eagerly cached/precomputed data). In such a case, you are still required to write a method

which complies to the async api signature.

In such cases, however, no await is required in the method’s code. Writing such an async method

without await actually issues a compiler warning. The correct approach is to skip the async keyword

and to write the method by manually returning tasks with appropriate apis.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 48

5.9.2. Example

This is an example interface and it’s stub implementation.

using	System.Collections.Generic;
using	System.Threading.Tasks;

//	This	is	an	interface	for	getting	values	based	on	keys	from	a	data	
source.
public	interface	IKeyValueStore
{
		Task<string>	GetAsync(string	key);
		Task	SetAsync(string	key,	string	value);
}

//	This	is	a	stub	class	used	for	tests,	for	example.
public	class	TestStore	:	IKeyValueStore
{
		public	Task<string>	GetAsync(string	key)
 {
				if	(key	==	„ProductVersion”)
 {
						//	Return	a	task	manually.
						return	Task.FromResult(„1.0.0”);
 }

				//	Behave	same	as	async	methods,	return	a	task	with
				//	wrapped	exception	instead	of	throwing	directly.
				return	Task.FromException<string>(new	KeyNotFoundException());
 }

		public	Task	SetAsync(string	key,	string	value)	=>
		Task.CompletedTask;

}

Be careful about the behavior of exceptions thrown by such synchronous methods, directly
or indirectly. Normally, asynchronous methods wrap all exceptions in the returned task
object. That means it’s good practice to use return Task.FromException instead of throw
to surface exceptions from task returning synchronous methods, if possible, to minimize
surprises.

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 49

5.10. Throw argument related exceptions directly instead of wrapping
them in tasks

Arrange async methods so that exceptions related to argument validation are thrown directly, instead

of being wrapped in a task object.

5.10.1. Explanation

Argument validation exceptions signify actual programmer errors and it’s best for them to be thrown

as soon as possible. In case of asynchronous methods, they would ideally be thrown directly from the

method itself instead of being wrapped in some kind of task object.

The problem here is that all exceptions thrown from methods marked async are wrapped in their

returned tasks. The solution to the problem is to split an async method in two parts, one marked

async doing actual work, and another one without the async modifier, which performs argument

validation then calls the other method and returns it’s task. In fact, there is a feature called local

functions in C# language, which was created specifically to address similar use cases.

5.10.2. Example
This is an example of an async method doing argument validation. The method is split in two parts

where the first one is a method which is to be called by the user and which does argument validation,

and the second part does the real work. The second method is represented as a local function. This

makes it explicit that these two parts are actually related.

static	Task	MyDelay(int	n)
{
		//	Argument	validation
		if	(n	<=	0)
 {
				throw	new	ArgumentException(nameof(n));
 }

		return	MyDelayCore(n);

		static	async	Task	MyDelayCore(int	n)
 {

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 50

				//	Do	the	real	work,	all	exceptions	here	are	wrapped.
				await	Task.Delay(n);
 }
}

6. Further learning
This guide does not cover all the details about asynchronous programming and related features, like

the TPL. Below is a non-exhaustive list of external resources, like documentation and blog posts,

which you can use to further extend your knowledge:

• Microsoft’s threading documentation,

• More information about asynchronous programming patterns, including the TAP,

• Description of implementing the IAsyncDisposable interface,

• Asynchronous programming best practices written by ASP.NET Core team,

• Stephen Toub’s detailed blog article about history of async in .NET and inner-workings of async/

await feature,

• System.Threading.Tasks.Task API reference for .NET 7.0.

https://learn.microsoft.com/en-us/dotnet/standard/threading/managed-threading-basics
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-disposeasync
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://devblogs.microsoft.com/dotnet/how-async-await-really-works/
https://devblogs.microsoft.com/dotnet/how-async-await-really-works/
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task?view=net-7.0

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 51

.NET Poland Job Family

.NET Job Family is an internal unit at GFT Poland, making sure that its members have everything

to follow the desired development path in their career. We help you decide, provide guidance and

knowledge, support with trainings, conferences and certifications. You just pursuit your dream.

We are the experts, group of coworkers gathered around Microsoft technology stack. This means

little less than a hundred of well skilled and fully experienced .NET specialists. More than 80% of us

already achieved senior level and we can describe our tech leaders as versatile unique people with

usually more than 10 years of professional experience.

In GFT we mostly work in FinTech, but we are not attached only to financial area. We are involved

in various types of projects, like automotive or DevOps related. We are developers and consultants.

Our goal is to understand the core of the business, discover and address the risks upfront, help to

decide which road should be taken. Greenfield, legacy, redesign, move to cloud – that’s what we do.

Frontend, backend, full stack, whole system design? Sure, we can.

We always seek for something extra from our work, a little more than a bit of fun. Automation

frameworks, chat bots, performance improvements, DevOps activities – we are not afraid of anything.

With such a group of unique people there is always area to gain new skills, knowledge and

experience. We meet on a regular basis, keep every member up to date with all family and company

related news and changes. We share technical knowledge, experiences from solved problems,

introduce projects we are working on and allow other to learn from our mistakes. We do it live, online

and in our offices. After work we continue to integrate on regular family events. We are not scared

of flying axes, fast and furious karts or heavy bowling balls. We do whatever is necessary to give

everyone feeling that we are taking care of each other and got our back.

6. 6.B 6. 6.B

© 2024 | GFT Technologies SE and its affiliates. All rights reserved. 52

Give us the challenge, we will find the right tools and overcome it. People capable of achieving that

we already have!

	Thanks!
	1. Introduction
	2. Processes and threads
	Processes
	Threads
	Task Scheduler
	Thread Pool

	3. Sync vs async
	3.1.	Sync vs async for computational tasks
	3.2. Sync vs async I/O
	Sync / Blocking I/O
	Async I/O

	4. Task-based asynchronous pattern in .NET
	4.1. Async/Await feature in C#
	4.1.1.	Asynchronous method declarations
	4.1.2.	 About the awaits
	Await operator
	4.1.3.	Exception handling in asynchronous methods
	Case 1: Handling properly awaited tasks
	Case 2: Handling NOT properly awaited tasks
	The UnobservedTaskException event
	4.1.4.	async void methods
	4.1.5.	Asynchronous Main method
	4.1.6.	Asynchronous iterators
	4.1.7.	Asynchronously disposable objects

	4.2.	Async in different application models
	GUI threading model
	Synchronization context
	Default await behaviour
	Using ConfigureAwait method

	4.3.	Operation cancellation

	5.	Asynchronous programming best practices
	5.1.	Use ConfigureAwait(false) when awaiting async operations in libraries
	5.1.1.	Explanation
	5.1.2.	Exceptions

	5.2.	Use Task.Run() to execute CPU bound tasks asynchronously
	5.2.1.	Explanation
	5.2.2.	Example

	5.3.	Avoid calling IO bound async methods using Task.Run
	5.3.1.	Explanation
	5.3.2.	Exceptions

	5.4.	Prefer Task.Run() over TaskFactory.StartNew()
	5.4.1.	Explanation
	5.4.2.	Example
	5.4.3.	Exceptions

	5.5.	Avoid usage of thread pool for long running operations
	5.5.1.	Explanation
	5.5.2.	Example
	5.5.3.	Exceptions

	5.6.	Avoid blocking in async methods
	5.6.1.	Explanation
	5.6.2.	Example
	5.6.3.	Exceptions

	5.7.	Avoid async over sync
	5.7.1.	Explanation
	5.7.2.	Exceptions

	5.8.	Avoid sync over async
	5.8.1.	Explanation
	5.8.2.	Example
	5.8.3.	Exceptions

	5.9.	Do not use the async keyword for methods which always return synchronously
	5.9.1.	Explanation
	5.9.2.	Example

	5.10.	Throw argument related exceptions directly instead of wrapping them in tasks
	5.10.1. Explanation

	5.10.2. Example
	6.	Further learning
	.NET Poland Job Family

